
rAO-AOBN 661 MICHIGAN UNIV ANN ARBOR DEPT OF MATHEMATICS F/6 121APOIAI1O H PCRMO COE PRTRTFDTRI
MAR go M LUSKIN , J DESCLOUX. J RAPPAZ F49620- 79-COI4q

UNCLASSIFIED AFOSR-TR-80-O058 ML

I ED



11111 1 l i 5

MICROCOPY RESOLUTION TEST CHART

NA 'ONAL. BUjRFAU OF SIAND3AFDS-19A3 A



T w /
I

~o~-TI. 8 0- 0 548 ' .1' \ ' '-

APPROXIMATION OF THE SPECTRUM OF CLOSED OPERATORS

THE DETERMINATION OF NORMAL MODES OF A ROTATING BASIN

Jean Descloux

Departement de MathematiquLVE

Ecole polytechnique Federale

O1007 Lausanne

Switzerland

Mitchell LuskinI  _

Department of Mathematics

The University of Michigan

Ann Arbor, Michigan 48109

Jacques Rappaz 2

Centre de Mathematiques Appliquees

Ecole Polytechnique

91128 Palaiseau

France

iSupported by AFOSR under Contract F49620-79-C-0149 and
by a Faculty Research Fellowship from the Horace Rackham School
of Graduate Studies, The University of Michigan.

Q 2Supported by the Ponds National Suisse de la Recherche
4C Scientifique.

LI AMS(MOS) subject classifications (1970). Primary 65N25, 65N30.

807 714 18
distribution unlimite~d.



UNCLASSIFIE[D
SECURITY CL_I. Cj TION OF THIS PAGE (%'he. flat& Frerd) 7

//j g,,iCtcheTA/LuskPAG Jea/Dscou REA INcSTeUCTIONa
BFO- -. F4 FT79-C FORM

R EROMN ORANZAIO NAMESIO AND ADR3 R0IPOGRAM CALGNUM3E

AnArbr SEsl 480 5 463 110F 204A
I OTOLINFFC NAMEbe AN ADDES OF. REPORT &_EAO COVRE

THE~~~~ ~3 NUMBERTIO OF PAGESODS FA .

14 MONIORING ORAGNCYAI NAME AN ODRESS ifrn fro -otrl-n Ifie ,6 SEURT CLS.(fti-eo

i6. DISTROLTIONG STATCEME Aof th DRES 12.REPoTrt)

Apovedn AFor puslicgon reeaC disribtio 3niitd

I?. DISTRIBUTION STATEMENT (of theistrc nee nBok2.I leefo Report)

IS. SUPPLEMENTARY NOTES

Submitted to MATHEMATICS OF COMPUTATION, December 1979

19. KEY WORDS (Continue on reverse aide if necessary and identify by block ntumber)

20. ABSTRACT (Continue on reverse side It necessary end Identify by block nupnbar)

This paper gives a theory of spectral approximation for closed operators in
Banach spaces. The perturbation theory developed in this paper is applied to
the study of a finite element procedure for approximating the spectral proper-
ties of a differential system modeling a fluid in a rotating basin. 1

j D JA 7 1473 EDITION OF INOV65 IS ODSOLIETIF UNCLASSIFIED '/.'- [



Abstract

This paper gives a theory of spectral 
approximation for

closed operators in Banach spaces. 
The perturbation theory

developed in this paper is applied 
to the study of a finite

element procedure for approximating the 
spectral properties of

a differential system modeling 
a fluid in a rotating basin.

Accession For1 TIS ,*. .I

AIR FORCE OFFICE OF SCIN C' Unz.c 14) -.- TAr

NOTICE OF - r ed and

ThisO t z..: lY,-1- (7b.

bDist
A. D. BLUo ficer
recbnical 1nformation offic,

I Avail a :d/o"

Dist special



-1-

Introduction

In this paper, we give a theory of spectral approximation

for closed operators in Banach spaces. We then apply this t*-eory to

an analysis of the approximation of the spectral nroperties of

some differential systems by finite element methods.

Bramble and Osborn [1] and Osborn (14] developed a theory of

spectral approximation for compact operators in Banach spaces.

Their theory can be applied to the analysis of many numerical

procedures for the spectral approximation of differential operators,

T , such that T + XI has a compact inverse for some x e x .

Most of the differential systems in the theory of elasticity are

in this class.

However, there are many differential systems of interest in

mathematical physics which do not have compact resolvents. These

operators can have continuous spectrum, eigenvalues of infinite

multiplicity, and finite limit points of eigenvalues. Also, the

eigenfunctions need not be smooth since the differential systems

are not necessarily elliptic.

Descloux, Nassif, and Rappaz [4,5] have studied the approxi-

mation of the spectrum of a differential system of interest in

magnetohydrodynamics which has a bounded inverse, but not a

compact inverse. They developed a theory of spectral approximation

for bounded operators which treats this problem. An analysis of

the approximation of the spectral properties of a class of bounded

operators by finite element methods has also been done by Mills

(12, 13].
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The results in this paper apply to closed (not

necessarily bounded) operators in Banach spaces. We apply the

perturbation theory developed in this paper to the study of a

finite element procedure for approximating the spectral properties

of a differential system modeling a fluid in a rotating basin.

We note that unlike previous authors, we analyze the approxi-

mation of the differential operator directly and not through its

inverse.

The time dependent equations for the differential system

modeling a fluid in a rotating basin are
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- u , (x,t) e5 x M,

(0.1) - = - - f - WRu , (x,t) e 2 x IR

u n = 0 , (x,t) e a x IR

f idx = 0

where Q C 3R2  is a bounded, connected open set with smooth

boundary, an , u = (u1 ,u2) is the horizontal volume transport,

is height of the fluid above equilibrium level, R is the

linear operator R a = (-u2,u1 ) , n is the exterior normal to

a , and f > 0 and w are real constants representing

friction and Coriolis terms.

Thus, we are concerned with approximating the spectral

properties of the system

T( ,_) = (-V . iU, - V7 - fib - wRu) , x e n,

(0.2) u. n = 0 , x e ,

f edx= 0.
n

We note that T - I is a symmetric, formally dissipative operator

with maximal non-positive boundary conditions [9]

*1!
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If f = w = 0 , then T(O,R74) - 0 for all smooth functions

' such that 4 = 0 on n . Hence, in this case (f = w = 0),

0 is an eigenvalue of T of infinite multiplicity. Since

the sum of an operator with non-compact inverse and a bounded

operator has a non-compact inverse, it follows that T - AI

has a non-compact inverse for the general case f,w e I , X e C

X belonging to the resolvent set of T

We give here error estimates for a finite element procedure

proposed by Platzman (15] to approximate the spectral properties

of (0.2) . The selfadjoint case f = 0 was analyzed by Luskin

[11] by techniques different from those used here.

In Section 1 , we give a general theory for the approximation

of a closed operator A by a family of finite dimensional operators

{Ah} . In our applications, A will be a differential operator

and Ah will be an approximation of A given by a finite

element procedure. We propose two properties P1) and P2) and

show that these properties imply the convergence of the spectral

properties of Ah to those of A . Error estimates in the applica-

tions will follow from Theorem 1.3.

We give special results in Section 2 for the case A and

Ah  are selfadjoint operators in a Hilbert space. These results

apply to the approximation of continuous spectrum.

The operator theory developed in Sections 1 and 2 is

applied in Section 3 and 4 to examples of the approximation of
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spectral properties of differential operators by finite element

methods. In Section 3 , we apply our theory to obtain error

estimates for the approximation of the spectral properties of

scalar, second order, uniformly strongly elliptic operators

by the standard finite element method. This example is included

even though the results are not new since we believe that its

inclusion will make it easier for the reader to understand our

main example in Section 4.

In Section 4, we define and analyze the approximation of T

Theorem 1.3 gives optimal order estimates for the approximation

of eigenspaces. Optimal order eigenvalue estimates for this

problem have been given in [i] for the self-adjoint case and

are derived from the results in this paper and [3] for the

general case.

We note that we use without explicit reference the classical

spectral theory; see for example Kato [6], Riesz-Nagy [16] •

-- - . - - - - - - -- - - - - - - - -
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1. Approximation of the Spectrum of Closed Operators in Banach Spaces.

We first introduce some notation. Let X be a complex

Banach space with norm II • Denote by S(X) the set of

bounded, linear operators B: X - X . Also, denote by Z(X)

the set of closed, linear operators C: k(C) CX - X where the

domain of C , f(C) , is not necessarily dense in X For

C e e(X) , P (C) is the resolvent set of C defined by

pC) = {z e a I (z-C) 1 e 4(x)}

-i
If z e P(C) , we define the resolvent operator R z(C) = (z-C)

X - X . The complement of p(C) is a(C) = {z e miz o P(c)}

the spectrum of C .

Let Y and Z be closed subspaces of X and x e x

We set

6(x,Y) = inf Ilx-yI , 6(Y,Z) = sup 6(y,Z)
yeY

(Y, Z) = max(6(Y,z),6(z,Y)J

6(Y,Z) is called the gap between Y and Z and is a measure of

the "distance" between these spaces. If C and D are in (X)

with graphs GCIGD C X x X , then we define 6(C,D) 6 d(GCIGD) , i.e.,

6(C,D) = Sup inf { Iix-yli + llCx-Cylj •
xe MC) ye &(D)

II xl+ IICx 11= 1

Furthermore, we define

6(C,D) - max(6 (C,D) ,6 (D,C))

.f ......
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Finally, if Y is subspace of 9 (C) f '(D) , we set

11C-DtI = sup ILCY-Dyll
yeY

Now, let A e L(X) be a given operator. In order to

approximate u(A) , we consider a family {Xh} of finite

dimensional subspaces of X parametrized by h and linear operators

Ah: Xh 0 Xh

We denote by a (Ah), o(Ah) , and Rz (A) Xh " Xh the

spectrum, resolvent set, and resolvent operator of Ah considered

as a bounded operator in Xh However, .hen used in connection

with expressions of the type "6(AhA)" or " 11A-AhlIX h  , Ah  is

considered as a closed operator in X with non dense domain Xh

Let r c p (A) be a given Jordan closed curve; then

2=--I- f Rz (A)dz: X - X

and if r C P(Ah)

Eh = 1 r h Xh - Xh

are the spectral projectors relative to A and Ah  respectively.

We shall also use the relations

1

AE = 2y-- zRz(A)dz: X KX

r
and

1hh .~i.J (Ah) dz : Xh Xh

Ah~ h " " z~ -
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We now introduce the following two properties:

P1) lim 6 (AhA) - 0
h- 0

P2) Yx e X , lir 6 (x,Xh) =0

h-0

The following theorems contain the main results of this section.

We note that c < - shall denote in this paper a positive

constant which is independent of h , but which varies from

estimate to estimate.

Theorem 1.1. Suppose P1) is valid an! let K C p(A) be a

compact set. Then there exists h0 > 0 and c = c(K) such that

for h < h0 we have K C p(Ah) and

fR z (A)-R z (Ah ) H X < c6 (Ah,A) , z e K

Theorem 1.1 shows that if P1) is valid, then the approxima-

tion of a (A) by o(Ah) is upper semicontinuous. Furthermore,

for h < h0 , IlRz(Ah) 1ix h  is uniformly bounded on K This

is a stability property.

Theorem 1.2. Suppose P1) is valid. Then there exists h0 > 0

and c so that for h < h0 we have the bounds

(1.1) 11 E-E hI X h + 11 AE-A h E hIx h < c6 (A hA),

(1.2) 6(Eh(Xh) ,E(X)) < c6 (AhA)

(1.3) 6(x,Eh(Xh)) < c{6 (xXh) + 6 (AhA) 1Jx } , x e E(x)
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Theorem 1.3. Suppose that P1) and P2) are satisfied and that

E(X) is the finite dimensional subspace corresponding to an

isolated eigenvalue X of algebraic multiplicity m of A

Let a be the ascent of (X-A) and let f be a holomorphic

function defined in the neighborhood of X We set

Yh = min{M(AIE(X) ,Ah) ,6 (Ah,A)}

Then for h small enough, AhIEh(Xh) : Eh(Xh) - Eh(Xh) has

exactly m eigenvalues Xl,h,...Xm,h repeated according to

multiplicity. Also, there exists h > 0 and c such that the.0

following bounds are valid for h < h0

(1.4) 6[Eh(Xh),E(X)) < cYh

(1.5) 6A [AhIE h (Xh ),AI E(X)) <Cyh

1 m
(1.6) If(X) - m l f(X )I <  c y

(1.7) maxihl i hX
i-- i, .. m ioI" Y

Remarks. If P1) and P2) are satisfied, then (1.3) of

Theorem 1.2 shows that lim 6(x,Eh(Xh)) = 0 , Vx e E(X) , i.e.,
h_-9 0

any x e E(X) can be approximated by vectors in Eh(Xh) . It

is not true however that any z e a (A) can be approximated by

eigenvalues of Ah , i.e., there may exist z e a(A) so that

dist(z,a(Ah)) fails to converge to zero. (the approximation

of a(A) by a(Ah) is not necessarily lower semicontinuous).

The classical counter-example is the shift operator (see, for
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example, Kato [6, p. 210]). Note that if A and Ah are

selfadjoint operators in a Hilbert space, then lower semicontinuity

is true under weaker conditions than P1), P2) (see, for example,

Kato [6, p. 431])

In order to prove Theoremsl.l and 1.2, we first prove a

sequence of lemmas which are variants of results found in

Kato [6, p. 197-208].

Lemma 1.1. Let B e6(X), C e ((X) . Then

a) cS(C,B) < ItC-sBflS(c)

b) IJc-B I e(c)

S(1+ IIB I ) 26(C,B)/(l- (1+ IIBI )6(C,B))

if the denominator is positive.

Proof. Part a) follows directly from the definitions. We prove

part b) Let x e '(C) , 11x~l = 1 and let E > 0 be

arbitrary. It follows from the definition of 5 (C,B) that

there exists y e x such that

(1.8) i1 x-yjl + 11Cx-By 11 < 6(C,B){ lx!l + 11Cxfl } + e.

Consequently, we have

11 (C-B)xlI < IjCx-Byjj + lIBy-BxlI

< JCx - Byll + JI I Iy-xI j

( (1+ IIBII ) (C 1 Cx-By l yxll + 11
_< (1+ 11 Bll ) 6(C,B) 11lxll + l11Cxll + c (1+ llB11 )
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Replacing jjCxJj by 11 (C-B)x1 [ + 11BII 1jxJJ in the right

hand side of the above inequality and letting E - 0 yields

the estimate

II (C-B)xji <
(1.10)

(l+ IIBII )6 (C,B)( (1+ UIBII ) jIxIj + 11 (C-B)xfl }

The result follows directly from (1.10) Q.E.D.

Remark. It follows from Lemma 1.1 that if A e 6 (x) , then

property P1) is equivalent to limlA-A hI Xh = 0 This is the
h-0h

spectral approximation condition of Descloux-Nassif-Rappaz (4]

Lemma 1.2. Let B e 8 (X) .-i C,D e 2 (X) Then

6 (C+B,D+B) < (1+ 11B11 )26 (C,D)

Proof. Let x e '(C) , 11xl + 1 (C+B)xll = 1 and

let e > 0 be arbitrary. We have by the triangle inequality that

(1.11) 1i x 1l + I CxlJ i 11 x i1 + 11 (C+B)xl + 1i Bx I < 1 + IIB I1

It follows from the definition of 6 (C,D) that we may choose

y e k(D) such that

(1.12) II x-y (1 + 11 C -DylI : 6 (C,D) (1+ U1 B ) + •

Hence,

lix-yl + Il (C+B)x - (D+B)II

< JJx-yll + IJCx-DyjJ + IJB1J jjx-yJj
(.13)< (1+ II1 )2S(C,D) + (1+ IIBII )r:.
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The result follows directly from (1.13) after letting e -+ 0

Q.E.D.

Lemma 1.3. If C and D e e(X) are invertible, then

S(CD) = S(C -,D

Proof. This result follows directly from the definitions. Q.E.D.

Lemma 1.4. Let C,D e t(X) and suppose there exists < such

that

(1.14) 1iDxii >K fxf14 x e e(D)

If 6(C,D) < min(l,K), then C is invertible.

Proof. We show that if C is not invertible, then S(C,D) > min(l,K).

Let x r S(C) be such that lxi = 1 and Cx = 0 Let

e > 0 be arbitrary. It follows from the definition of S(C,D)

that since Cx = 0 we can choose y e Y(D) such that

1 }Ix-yj + 1iDyll < (C,D) +

It follows from (1.14) that

S(C,D) + e > iix-yl + c ll y ll

>_ I' l-yll I + 'C Hyll
(1.15) > rain(l,K)({1- {I{l I +  llYll}

> min(l,) .

Since c > 0 was arbitrary, it follows that we have reached

the contradiction 6(CD) > min(l,K) . Q.E.D.

- _ _ _
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Proof of Theorem 1.1. In this proof, c depends on K but all

estimates are uniform for z e K . By Lemma 1.2,

(1.16) 6(z-Ahz-A) < c6(A hA) , z e K

It follows from (1.16) and P1) that

(1.17) lim 6(z-Ah' z-A) - 0 uniformly for z e K
h-0

Since K C p (A) , there exists c1 . such that

(1.18) II (z-A)xll >C 1  xIIl , K e k (A), z e K

We can now conclude from (1.17), (1.18) and Lemma 1.4 that there

exists h0 > 0 such that z - Ah is invertible for h < h0 and

z 6 K . Since Xh is finite dimensional, we have that K C p (Ah)

for h < h0 *

Furthermore, it follows from (1.16) and Lemma 1.3 that

(1.19) 6(Rz(Ah),Rz(A)) < c6(AhA), z e K

Hence, we can obtain from Lemma l.lb the result

IIRz (A) - Rz(Ah) fI X C6(R z (Ah) Rz (A))

(1.20)
< c6(Ah'A)) h< h0, z e K

Q.E.D.

Proof of Theorem 1.2. The result (1.1) follows from Theorem 1.1

and the following estimates:
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1IE-Ehl Xh + El-AhE hl X h

(1.21) " I- 1 - f(Rz (A) -Rz(Ah))dzI1 Xh

IL-t f (zR (A) - z RZ(Ah))dzll X
h

< (270) - max lIRz(A)-Rz(Ah)lI ' f (l+izI)Idz
zer zh 

The estimate (1.2) now follows directly from the estimate (1.1).

In order to prove (1.3), let x e E(X) and xh G Xh Then

x - Eh h= E(x-xh) + (E-Eh)Xh . Consequently,

6(x,Eh(Xh)) <( hJEl hjX-xhl + 1IE-EhII Xh ilXh i )

(1.22)
.j( hJEl + JE- Ehl X h) 1lx-Xhl + l+E- EhIl Xh 1xhl

The result (1.3) follows by taking the infimum over xh e Xh

and using (1.1). Q.E.D.

It remains to prove Theorem 1.3. We first quote without proof

the following simple result:

Lemma 1.5. Let Y and Z be two subspaces of X with the

same finite dimension and let P: Y * Z be a linear operator

such that

(1.23) iPy-yi < 1yl y e .

Then P is bijective and

(1.24) lP- 1 zil : 2 izjl , z e Z

:7
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Lemma 1.6. Let Y and Z be two subspaces of X

a) If d(YZ) < 1 , then dim Y = dim Z

b) If dim Y = dim Z <

S(Y,Z) < 6 (ZY) [-6(ZY)]-I

Proof. For a) , See Kato [6, p. 200] . For b , see Kato (7]. Q.E.D.

In this rest of this section, we suppose that the hypotheses of

Theorem 1.3 are satisfied. Also, c and h0 will denote two

generic positive constants which depend on F

Lemma 1.7. UtAIE(x),AhE h ) (x) Ah) h < h

Proof. Let x e E(x), ljx + IIAxjj = 1 , and let xh e Xh

be such that

IX-X h.l + 11 Ax-AhXh I _< 6(AIE(x),Ah)

We have

lx-Ehxhll + l Ax-AhE hxhl

-11 1  f(Rf (A)x-Rz (Ah)x h)dzjI

+ II-- f (zRz(A)x - ZRz (Ah )x)djj
2rr z hd h

< (2r)- 1 max !Rz(A)x-R z(Ah)xhl f (l+Izl)ldzi
zer r

In order to conclude the proof of the lemma, it suffices to

estimate lIRz (A)x-Rz(Ah)xhI for z e r . We set w = Rz(A)x e E(X)

and let wh e xh be such thath
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(1.26) IIW-Whfl + IfAw-AhwhlI 6 (AAIE(x),Ah) (' w11 + UAwU j

However,

fjlw + fIII -JR z(A)xII + tR z(A)AxI

< ( R z (A) ( fxj1 4' IIAxU )

fRz (A)l c, z e r

Thus,

(1.27) IW-WhUj + ftAw-Ahhll < c6(A!E(x)FAh)

By using Theorem 1.1, i.e., JIRz(Ah) < c h ze ,

we have

IIJRz(Ah Xh-Wh f tRz(AY (xh-(-Ahwh) II

(1.28) < C {(Xh-X 1 +i (z-A)w- (z-Ah)whII }

< c6 (AIE (x) ,Ah)

Consequently,

tRz(A)x - Rz(Ah)xhII < 1iw-Whl1 + IIWh-Rz(Ah)xhil

(1.29)
< c6(AIE(x) Ah) . Q.E.D.

Remark. Lemma 1.7 is still valid if the hypothesis P1) is

replaced by the uniform boundedness of RZ (Ah) on r

I .
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Proof of Theorem 1.3. From (1.2) and (1.3) of Theorem 1.2 it

follows that lrn 6(Eh(xh),E(X)) = 0 . Consequently, by Lemma 1.6 a),
h-0

dim Eh(Xh) = dim E(X) = m for h < h0  This proves that for

h < h0, AhIEh(Xh): Eh(Xh) - Eh(Xh) has exactly m eigenvalues

m,h repeated according to multiplicity.

By Lemma 1.6 b), we have that

StE(X),Eh(Xh)) < c min{ (E(X),Eh(Xh))
(1.30)

d(Eh(xh),E(X)} , h < ho

It follows from Lemma 1.7 that

6(E(X), E h(X h) <_ c6(A IE(x),A h1Eh (X h)
(1.31)

< C6(AIE(X),Ah) .

The result (1.31) and (1.2) of Theorem 1.2 yield (1.4) when

substituted in (1.30)

We have by (1.1) of Theorem 1.2 that

(1.32) 6(AhEh(Xh) , AIE(X)) _< c6 (Ah,A); h < h0 .

Hypotheses P1) and Lemmas 1.6 and 1.7 allow us to conclude the

validity of (1.5)

Now let ul,...,um be a basis for E(X) with I(uill +

IlAuilI - 1 , i 1 1,...,m . We then choose U,h,* .. Umh e Eh(Xh)

so that

I_ I
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Iui-ui, hf 11 +11Aui-Ahui hll (A (X),A hlEh (hl,
(1.33) i = l, ... , .

Next, we define Ah: E(X) Eh(Xh) as the linear operator

such that AhUi = Ui,h , i = 1,...,m . It follows by (1.5)

that

(1.34) (u-AhUiI + JIAu-Ah A hul < cYh lluU u e E(x

By PI) ir Yh = 0 , so by Lemma 1.5 and (1.34) Ah  is
h-0

a bijection whose inverse A 1  is uniformly bounded for h < h0

Let A = l(X) and Ah = Ah AhlAhh: E(x) (X) For u e E(X)

we have

11 (AA-)uI h ll (h-Ah Ah) u

(1.35) < c{ 11 (A h- I)Aull + Jj AU-A h Ahul I[

S. cy h  Ilul , h < h 0 •

Consequently,

(1.36) JAAhII E(X) < h

Now Ah has eigenvalues Xl,h,...X m, h and A has the

eigenvalue A of algebraic multiplicity m . Also, a is the

ascent of (A-A) . We have reduced our problem to the matrix

case. The results (1.6) and (1.7) of Theorem 1.3 now follow

from the classical perturbation theory for finite dimensional

operators (17, p. 80-81]. Q.E.D.

"9"M
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2. The Approximation of the Spectrum of a Selfadjoint Operator.

In this section, we suppose that X is a Hilbert space,

A: 49 (A) C X - X is selfadjoint, and Ah: Xh .Xh is

selfadjoint in Xh for all h . If I CIR is an interval

(finite or infinite), EI: X - X will denote the spectral

projector of A relative to I and Eh,I: Xh - Xh will denote

the spectral projector of Ah relative to I We can prove the

following theorems:

Theorem 2.1. Pl) 4=+ V closed intervals I,J, one of them

bounded, I J= , we have

li IEIEhJ1I X = 0
h-0 h

Theorem 2.2. Suppose that P1) is valid. Let J C I where

J is a closed bounded interval and I is an open interval. Then

(2.1) lim 6(EhJ(Xh),EI(X)) = 0
h-0

Theorem 2.3. Suppose that P1) and P2) are valid.

a) Let I be an open interval and x e EI (X) . Then

lim6((x,Eh IXh) ) 0
h-0Q

b) If X e a(A) , then

lim dist(X,(Ah)) 0
h-*0

. ..... ... .. i .. .
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Remark. Theorem 2.3b states that the approximation of C(A)

by o (Ah) is lower semicontinuous.

Theorems 2.1, 2.2, and 2.3 have been proved in Section 3

of Descloux, Nassif, Rappaz (4] when A is bounded (recall

our remarks after Lemma 1.1). Our proof ,.,ill reduce the

unbounded case to the bounded case. We shall restrict ourself

to the proof of Theorem 2.2. Theorems 2.1 and 2.3 can be obtained

by similar arguments. Furthermore, for the sake of simplicity

and without much loss of generality we shall suppose that

p (A) r IR # .

Proof of Theorem 2.2. As mentioned above, we suppose there

exists a e R with a e 0 (A) . We introduce the function

OM = (a-X)-  and set B = (A) = Ra (A) . By Theorem 1.1,

Bh = #(Ah) = Ra(Ah) is well-defined for h sufficiently

small and

lim 1B-BhII Xh 0
h-0 h

For an interval M , FM X - X and Fh,M Xh 
* Xh will denote

respectively the spectral projectors of B and Bh relative to

M . As a first case, suppose a 0 I and set K = $(J) and

L = 0(I) . Then K and L are respectively a compact and an

open interval with K C L . From Theorem 4 of Descloux, Nassif,

Rappaz (4], we can conclude that

(2.2) lim 6(FhK(Xh),FL(X)) = 0
h-0
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However, the result (2.1) follows from (2.2) since Fh,K(Xh) 

EhJ(Xh) and FL(X) = EI (X)

The case a e I can be reduced to the preceeding one by

noting that we can find compact intervals Jl, J2 and open

intervals If, 12 with the following properties (for h

sufficiently small):

a 0 Il U 12

Jl C II , J2 C 12

EI(X) = E11 (X).9 E1 2 (X)

Eh, J (Xh) Eh,Jl (Xh) S Eh,J2 (Xh)

Q.E.D.

oV
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3. Application to Scalar Elliptic Boundary Value Problems.

We shall need the following notation to discuss the application

of our theory to the approximation of the spectral properties of

scalar elliptic boundary value problems. Denote by Q an open

set in In with a smooth boundary, 3 As usual, we denote by

L () the Hilbert space of square integrable, complex-valued

functions with inner product and norm

(3.1) <F,G> = f. FGdx , 1 F11 2 = <F,F>

We denote by Hr (Q) the space of complex-valued functions whose

distribution derivatives of order less than or equal to r,r a

nonnegative integer, are in L2 () with norm

(3.2) 2 F1 2 = I II D F 1 2

We wish to consider the spectral approximation of the

operator

n n
Lu = - Z Di(aijDju) + I aiDiu + au , x e 4-,

i,j=l i i=l
(3.3)

n
U= a ij viDu = 0 , x e 9Q

i,j=l '

where we assume that L is a uniformly, strongly elliptic

operator with real-valued coefficients in CQ*(f) and

V = (Vl'''''Vn) is the unit exterior normal to 3Q We

associate with L the continuous, sesquilinear form on

H (S) x H1 (  ,

1> 
_"__
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n n
a= a i  + 7<aiDi,>

i,j=l1 J'D. 2i2.

(3.4)

+

We may assume (by replacing L by L + u , i e I) that for

some b > 0

2 1
(3.5) Re B(O,f) > b VIK I , e H (Q)

Let 1h C HI (Q) be a family of finite dimensional

subspaces parametrized by h , 0 < h < 1 , with r a positive

integer and c a positive constant, independent of h , such

that for 1 < s < r + 1 , u e Hs(O) , we have

(3.6) inf ( lu-×xI + h Ju-X l ) < ch s l u ll s

x e .3h

Many finite element spaces are known to satisfy (3.6) [2]

We define the operator Lh: 3h h by the relation

(3.7) B(Uh,W) = <Lhih, W>, W e h

Note that L h  is well-defined since 'h is finite dimensional.

We shall study the approximation of the spectral properties of L

by the spectral properties of Lh

Define the space

2 2Hj{Q) = {u e H (9)jI u = 0 for xe as}

We consider L as a closed operator from L 2(M) to L2(Q)

i.e., X = L2 (0) ,with domain D(L) H() Also, in the

VOW-h
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notation of Section 1, we set Xh = 1h It follows from

(3.6) that if u e Co(o) , then

6(u, h ) = inf ju-xj1 - 0 as h - 0
X Xe Sh

Since COO(f) is dense in L2(Q) , it is clear that property

P2) is valid.

We now turn to the verification of P1). To that end,

let Ph: h () be the L2 (Q) projection,

(3.8) <Po u-u,w> = 0 , we

and let P: H1 (Q) - be the HI(Q) projection defined byh h

(3.9) B(Plu-uW) = 0, w e

It follows from (3.5) that P1  is well-defined.
h

The following estimates for P0 and P are well-known
h h

[2]. There exists c < - such that for 0 < s < r + 1 and

u e Hs (Q) I

(3.10) JJPou-uJJ < ch iiuU5

and such that for 1 < s < r + 1 and u e H s (n)

(3.11) IIPhU-Ull + h 1jP u-ul 1l _ chsjlu 1is

We now verify that

(3.12) S (LhL) * 0
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For Uh e jh f let u e D(L) satisfy

(3.13) Lu = Lh Uh

It follows by elliptic regularity that

(3.14) 1lull 2  < c ILh hUhI .

Now it is easily verified that Uh = Ph u Hence, by (3.11)

and (3.14)

(3.15) ijU-Uh_ l 1 lu-P ul < ch 2  lull < ch 2  1 hUhl

Since Lu = LhUh , we can conclude that for each Uh e G h

there exists u e D(L) such that

(3.16) 1lU-U hll + ILU-LhUh1 _< ch2 ( lIUhl + fILhUhll

Hence, we can conclude that

2
S(LhL) < ch

It is well-known that the spectrum of L consists of

isolated eigenvalues with finite dimensional generalized

eigenspaces. Let X e a(L) and let E(X) be the generalized

eigenspace corresponding to X . Thus, dim E(X) < . We shall

show that

(3.17) 6 (L IE(X),L h )  <c

The result (3.17) will imply that the conclusions of Theorem 1.3

are valid with h < Chr+l .
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If u e E(X) , set Uh = Plu e It follows from
hh h

elliptic regularity that E(X) CC'(n) . Hence, by (3.11)

(3.18) Ilu-P1ull < chr + lllu l+ .

Also, note that if u e H2 (Q) , then

(3.19) P 0  = L h1u
h h hu

Thus, it follows from (3.10) that

IILULhUhL = IlLu-LP1ull

(3.20) = llLu-P 'Lu ll < ch 1  Lull r+ l

Note that since dim E(X) < - and all norms on finite dimensional

spaces are equivalent, there exists a constant c < - such that

for u e E(x) ,

II Lull r+l < c lull

IIull r+l < c Ilull

So, (3.17) follows from (3.18) and (3.20).

The results on eigenvalue approximation implied by (3.17)

are not the optimal O(h2r) results for this problem that have

been obtained by other methods (1,14] unless r = 1 . However,

it can be shown that optimal O(h2r ) eigenvalue results for

the problem can be derived from Theorem 1.3 for this problem if the

approximation of L by Lh is analyzed in a space X which

is taken to be an appropriate negative order Sobolev space.
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4. Application to the Linearized Shallow Water Equations.

We turn now to the description and analysis of an approximation

procedure for the spectral properties of the operator , T

associated with the linearized shallow water equations. Recall that

T(Z,u) = (-7. ,-V.-fu-wRu) , x e Q
_) -0.

(4.1) u.n = 0 , x e 3Q

f dx = 0

where Q IC 2 is a bounded, connected open set with smooth

boundary, 3Q , _ = (ulu 2) , R is the linear operator

Ru = (-u2,u) , n is the exterior normal to M , and f > 0

and w are real constants representing friction and Coriolis

terms. We assume that M has a finite number of connected com-

ponents, { }s= Also, assume that the sets 3. are smooth
i iO

2arcs in IR

We shall need the definitions of the following spaces

of scalar-valued functions:

L2 () = {w e L2 (O)l f wdx = 0}
1 =1 2 I(4.2) H,(m) n L,2(a)

H 1(a) = {w Ne Hl()jI w(x) = 0 for x e 3Q

and there exists constants,
(is

(c ')i such that w(x) = c i

for x e mi' i =,...,s}

For k > 1 , set

(4.3) H =k (a))-H 1 k

H k(Q1) H 1(fl) r) H k(Q2)
HkHc( = H (n ) H(n)
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We give these subspaces of L2 () and H1 (Q) the inner

product and norms defined in (3.1) and (3.2).

We also define the following spaces of vector-valued

functions:

L2 (a) 2 = (Ulu 2 )1 U1 ,u 2 e L2(,)j

Hk()2 = fu = (ulu 2 )1ul 1u 2 e Hk(0)1 for k _> 1.

With these soaces we associate the inner product and norms

= <U1 ,vl> + (u 2,v2 >

S2 = <, > 2

for u = (UlU2 v = (VlV 2 e L2 )2

S+ u2 112lir Ilk Iluzllk + l 1k

for _ = (ulu 2 ) e Hk (n) 2

Finally, for functions ( , ( e L,(Q) x L2 )

we define the inner product

, (E,v)> = , + UV>

and norm

i(;,u)l =1 < , ), , )>

and for functions (4,u) e H,( ) x L2 () 2  we define the norm

11 (4,u) 12 11;1 1 llII2

x + ---
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If 'u e L(n)2 , then there exists unique scalar functions

e H. () and Up e H1 () such thatc

(4.4) u = -v¢ + RVTP

The functions {f,} are known as Stokes-Helmholtz potentials

for u [8,15], and we define the functions S_" = , H = ,

It follows from elliptic regularity [10] that for k > 0 , there

exists c = c(k) , c < = , such that

(4.5). 11sik+l _ci . clu -"k lk+l C, Vce HIl 2

It is easily verified that

-N--



-28-

(4.6) <V,RV>= 0, e H,(), (n e H 1
C

Hence, (4.4) is an orthogonal direct sum decomposition.

Let {Ah } , 0 < h < 1 , be a family of finite dimensional

subspaces of H1 (Q) parametrized by h . Set

(4.8) *Lh H cQ)

We assume that there exists a positive constant c ,

independent of h , and a positive integer r such that for

1 < k < r + 1 and w e H ()

(4.9) inf ( IIw-XII + h IIw-X×l 1 ) < chk lIlwk
X e~vh

and for 1 < k < r + 1 and w e Hk()

(4.10) inf ( lw-xjI + h 11w-x1 I ) < chk llwll kx eftc
Xh

We also wish to assume that the spaces (7 h} satisfy the

"-inverse property" that there exists a positive constant

c , independent of h , such that

IN Ill ch-1 IIXlIo X

-1M~re 'O



We shall Use the spaces of vector-valued furnctions

It follows from (4.5) *(4.9), and (4.10) that for

0 < k < r, U Hk (a)

X h
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We shall need the result that if T e Mc , then

(4.12) V e Wh"

It is easy to see that (4.12) is valid if lh contains the

constant functions.

In order to define our approximation procedure, we

introduce the continuous, sesquilinear form B(-,-) on X X =

[H1(n) x L2 (a) 2 ] x Hi(Q) x L2(Q) 2  by

(4.13) -< f wRu, >

12 2U5),(,') e H( 2) L2(a)

We regard T in (4.1) as an unbounded, closed operator,
1 L2  2 1 L2  2

T: H.() x L(M H*(n) x L (1) , with domain

D(T) = I(c,)J= e 4(a)

(4.14) u e L2 (Q)2 ,v .u e Hln)

u n = 0 on aQ •

Thus, if ( ,u) e D(T)

(4.15) - 1 2 ) 2

(&,) eH* (a) x L S

We now define T X xh h h 'h h b

BZ,U), (Y,V)) - <T (z , ), (YO) I
(4.16)
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The operator Th is well-defined since the spaces 7),h x 7h

are finite dimensional.

We now show that the spectral properties of Th

approximate those of T by verifyinq P1) and P2) in this

case for X = H) x L2 (a)2 and Xh = 71 The

verification of P2) follows directly from (4.9) and (4.11).
22

To see this, we note that for (r,,) e Lm)/' C'(5) X C'(177)

it follows from (4.9) and (4.11) that

S(( ,X h) - 0 as h 0

j t I
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The validity of P2) now follows from the density of L2("I) n CU(I)
1 L2

C_ ( ff) 2 in H* (a) x L )

We next turn to the verification of P1) In order to

prove this result, we introduce and analyze some projection opera-
1 1

tors. First, we define the Hl(a) projection P*: H.(a)

'z by

hI
(4.17) KV(P*w-w),V)= 0 x Xe

and the H1(0) projection Pc H(1 (0) -ft' by
c h ch

(4.18) (V (PCw-w),VX> = 0 , e e

It is well-known (2] that there exists c < - such that for

1 < k < r + 1 and w e Hk (0 ) ,

(4.19) 1lPhw-wll 1 < ch k - l iwl11 k

and for 1 < k < r + 1 and w e Hc6)

(4.20) jIPCw-wi11 < chk-i flW1Ik•

It follows from (4.11) that if 6h: L2 (a) 2  h h is the

L2 (Q) 2 projection defined by

(4.21) hu, X>= 0 , × 6 h

then there exists a constant c < such that 0 < k < r

and u e Hk(a)2 implies that

(4.22) II6hu-I( < chk IIlc

It is easily checked that

________________________
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(4.23) Qu =-P*s' + RVP Huh h 11

Finally, define the L 2() projection L 2(:) -h ;2* by

(4.24) KOhW-WX> = 0, X e

It follows from (4.9) and the inverse property of h  that there

k
exists c < - such that if 1 < k < r + 1 and w e H,() , then

( 4 . 2 s -w J 1ih -W l < c h k - I l l
(4.25) II hw Ch 1  k "

The following lemmas will help us analyze Th

-~ 2 2
Lemma 4.1. a) Let u e L (2) and X e ;2*. Then

(4.26) <U-huVX> = 0
1

b) Let e H,(Q) and X e h Then

(4.27)

Proof. The proof follows easily from (4.6) and the definitions

of P ad h Q.E.D.

Now let P* 0 H~ 1 ()xL2 Q)2 _.7
h h h h~~ Ph 2)-

Lemma 4.2. If (;,) e D(T) and (Y,) e 71 x h then

(4.28) (T(;, ) - Th 6' h (, >

( < U-6h'), >

Proof. The proof follow directly from the definition of B and

Lemma 4.1. Q.E.D.
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Hence, it follows from Lemma 4.2 that if Q ah= Qh
(cu) L D(T) , and (Y,V)e x -P1 , then

(4.29) <QhT( -") - Th h UC) Y, V) >

h h h
- -< (tA-6..hi , >.

Theorem 4.1. 6(ThT) < ch.

Proof. Let (Z,O) e 71 x h and denote Th(ZU) by (D,E)

We must find" (c,iU) e D(T) such that

(4.30) II (Z,U)-( ,C ) [ + t 1ITh(Z,--)T( -T - i")

< ch( IiZ z,O) & + JITh(ZIU)

We choose (C,) as follows. Let e H2(Q) be the

solution to

S= D , Xe Q
(4.31)

an

where r- is the exterior normal derivative. (Note that

D dx = 0 since D e ( ) ). Now set C = Z , u = -V +

RVHU . It is clear that since z e H (Q) , V • u = -A$ = -D e H (Q),

• =n 0 for x e an that (Cu) e D(T)an

It follows by the definition of that P = S. By elliptic

regularity for (4.31),

11011 2  .1 c 11D 11 c JJD II

Hence, we can conclude from (4.19) that

-- Vd
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(4.32) _< ch I l 2  < ch D! lIx

So,

f1 (Z'U) - (xu) U

(4.33) -- IV(Su-S ) 11 < ch IfDIl

< ch IITh(ZU) 1x•

Denote T( ,u) by (d,e) It follows from (4.31) that

d = D . Since ph( ,U) = (Z, ) , we obtain from (4.29)

~~~ 34 KeE V) = (R(70-7p~f) V>

(434 
h4

Thus, if we set V = Qhe - E in (4.34) and use the Cauchy-Schwarz

inequality we can derive the estimate

II -"-E- < c lV0-VP* < ch 'I 12

(4.35)

< ch IIDIll < ch ITh(Z,T,) X

We must now estimate

=inf UI-fll(4.36) Il e-Qh efl eh

By the definition of T

e -= - fu - wRu

(4.37) = - 7Z - f(-V7 + RVHU)

- w(-RVO - VHU)

However,
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(4.38) -7Z - fRVHO + VHU e ' h

and

(4.39) 7fV0 + wR7 < C 11 t

So,

j heI X e 4 h

(4.40) < ch IIf7 + wRVII 1

< ch 1D111 < ch TI Th (Z,) Ix.

The triangle inequality, (4.35) and (4.40) yield

IIT(, )- Th(Z,U)JIX
(4.41)

= II.%- EI < chlITh(Z, )IIX

Thus, (4.30) follows from (4.33) and (4.41). Q.E.D.

Now let x e a(T) be an isolated eigenvalue of T with

finite algebraic multiplicity m . Let E(X) be the generalized

eigenspace corresponding to X . It follows from Theorem 1.3

that we are interested in an estimate for 6(TIE(X) ,Th).

Theorem 4.2. Let X e o(T) be an isolated eigenvalue of

T and let E(X) be its associated generalized eigenspace.

Assume dim E(X) = m < - , and assume that (&,') e E(X)
i r+ 1  Hr 2  Vru limplies that e H, (Q) u e H(Q) 7 u. e i+(Q).
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Then there exists c < , independent of h , such that

(4.42, S(TE(X),Th) < ch r

Proof. Let ( ,u) 6 E(X) Set (ZU) = oh (;,U) It

follows from (4.19) and 4.22) that

(4.43) rI (;,) - -"h( ' ) fIX < ch r( l) r+i +  '!Ulr "

Also, setting (Y,V) = QhT(,') - Th'ph( , ) in (4.29) and

using the Cauchy-Schwarz inequality we obtain

II~hT(;,U) - Th (,U )iIx QhT(,U '  -Uhh(:fu)2

(4.44)
<c 11 u-Q hujI < chr 1I'U11r

Finally from (4.22) and (4.24) we obtain

(4.45) IIT(,-U) - QhT( ,) K&

< chr( II;'fr+ lIf*1r+ 7UII.':r+l)

The result of the theorem now follows from (4.43), (4.44),

(4.45) and the finite dimensionality of E(X) . Q.E.D.

Finally, we note that our results can be combined with

the results in (3] to obtain optimal order estimates on the

convergence of eigenvalues. Assume that the conditions of

Theorem 4.2 are valid. Let E(X*) denote the generalized

eigenspace associated with the eigenvalue 7 of T* . We note

that it is well known that dim E (X*) = m and that 7 is an

isolated eigenvalue.
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Let

wh = (E(X),E(Xh))

wh= (E(X*),E(Xh ) )

Wh h

Let a be the ascent of X Then it follows from Proposition

3.2 of (3] that for h0  sufficiently small

max I-X i,h I  cw hw ,
i=l,. .. ,m

m
IX -1 m i I < c h < h

m ,h -- 'wh -0
i=l i,h h < h

Under the hypotheses of Theorem 4.2 we have proven that
h< chr Now assume, in addition, that ( ,iU) e E(X*)

.r+ 1 r (,2 Hr+
implies that c e H (o) , ' e ( 2 , e Hre (H).

Then we can conclude from applying the above arguments
r

to the adjoint problem that wh < chr Hence, under the

above conditions we obtain the optimal order eigenvalue

estimates

max IX-Xi h[l < ch2r
i=l,.. .,m

I m ch 2r h<hmx i,hl <  0 .
i=l---
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